

Pages: 255 – 273 | Volume: 4 | Issue: 3 (Summer 2025) | ISSN (Online): 3006-8428 | DOI: 10.55737/trt/SR25.141

Strategic Business Approaches for Nanotechnology-Based Sunscreen and Services

Nasira Jabeen ¹ Syed Kamal Abid ² Nida Ali ³ Tahira Khan ⁴ Roha Ali ⁵

ABSTRACT: The escalating ultraviolet radiation threats because of ozone damage have created a worldwide need for safe yet efficient sunscreens with attractive cosmetic qualities. Nanotechnology provides a solution by enhancing UV protection and addressing the stability and environmental issues of traditional sunscreens. This study examines strategic business approaches necessary for the development, commercialization, and adoption of nanotechnology-based sunscreens, focusing on advancements in titanium dioxide and zinc oxide nanoparticles. Key success factors identified include robust product development, regulatory compliance, innovative pricing, efficient distribution, and proactive consumer education. Supply chain resilience, corporate social responsibility, and intellectual property protection are critical for achieving sustainable competitive advantage. By embracing partnerships, digital innovation, and market expansion, businesses can overcome regulatory, environmental, and scalability challenges. This research proposes an integrated innovation model that aligns scientific progress with strategic business practices to ensure sustainability, market leadership, and responsible growth in the global sunscreen industry.

KEYWORDS: Nanotechnology, UV Protection, Titanium Dioxide and Zinc Oxide Nanoparticles, Regulatory Compliance, Consumer Education and Awareness, Environmental Sustainability, Market Expansion and Innovation

¹ Assistant Professor, Department of Management Sciences, University of Gujrat, Gujrat, Punjab, Pakistan.

Email: asira_iabeen2000@yahoo.com

- ² Research Scholar, Department of Management Sciences, University of Gujrat, Gujrat, Punjab, Pakistan. Email: kamalabid216@gmail.com
- ³ Research Scholar, Department of Biochemistry and Molecular Biology, University of Gujrat, Gujrat, Punjab, Pakistan.

Email: nidaalijk118@gmail.com

- ⁴ District Emergency Officer, Rescue 1122, Chinot, Punjab, Pakistan. Email: tahirakhan777111@gmail.com
- ⁵ Research Scholar, Department of Biochemistry and Molecular Biology, University of Gujrat, Gujrat, Punjab, Pakistan.

Email: roha55565@gmail.com

Corresponding Author:

Syed Kamal Abid

☑ kamalabid216@gmail.com

Introduction

Human beings need sunlight to exist, but UV radiation poses risks as ozone depletion leads to skin diseases and inflammation, and oxidative stress (Fonseca et al., 2023). Ultraviolet radiation exposure has led to high demand for sunscreen with broad-spectrum coverage because it significantly elevates the chances of skin cancer, accelerates premature aging, and causes various skin ailments (Wong et al., 2020). Topical sunscreens develop an overlay of UV blocking by synthetic organic or inorganic filters to protect the skin, but many traditional sunscreen products are not very stable under UV light and may lead to skin and environmental damage, thus questioning their long-term safety levels (Matta et al., 2019).

Nanotechnology in sunscreen enables major advancements in formula, and new safety and effectiveness investigations in this fast-developing sector are essential. Nanotech can provide a solution to come up with sunscreens that are stronger and more attractive (Wong et al., 2020). The safe sun protection demand is

booming, with more consumers opting to use safer, more beautiful, and durable products. Nanotechnology finds active application in various fields such as healthcare and energy due to its peculiar physicochemical characteristics. (Kaur et al., 2022).

Nanomaterials function within the 1-100 nm dimensional range and show unique magnetic, optical, thermal, mechanical, and electrical properties which enable consumer products to deliver improved functionalities and performance. Massive increases in consumer product nanotechnology adoption require ongoing monitoring and regulation to protect both environmental safety and consumer health. Nanomaterials exhibit high UV absorption and strong skin adhesion to become suitable materials for sunscreens through layered double hydroxides intercalated with anionic surfactants/benzophenone (Rajasekar et al., 2024).

Because nanomaterials have large surface areas, they provide cosmetic products with improved stability as well as prolonged effectiveness and enhanced skin penetration. Nanomaterials enhance product effectiveness through better ingredient absorption while providing transparent sunscreen formulas and maintaining lip color vibrancy, and making makeup last longer. Nanomaterials (NMs) serve in cosmetics to achieve precise ingredient delivery systems and maintain long-term product stability. UV filters are the primary use of nanomaterials, which appear mainly in skincare products, especially sunscreen products (Fytianos et al., 2020).

Nanotechnology-based sunscreen products use inorganic filters in the shape of titanium dioxide and zinc oxide nanoparticles, which do not interfere with visible light scattering because of their size, which eliminates the cosmetic whitening effect (Wong et al., 2020). The small size of these molecules enables them to work synergistically with synthetic UV filters to improve SPF and antioxidant properties as they maintain longer attachment on skin and decrease toxicity (Fonseca et al., 2023). Nanotechnology enables sunscreen products to display better effectiveness through the sun protection factor that gauges how many sunburn-causing UV rays penetrate the skin (Serpone, 2021).

Nanotechnology-based product demand surges within the global market as current market statistics show more than a thousand available products, while forecasted revenue totals will exceed trillions of US dollars. The market shows increasing demand because nanomaterials increase product capabilities and introduce novel functionality within medicine, cosmetics, and environmental science applications (Ciambelli et al., 2020). Nanotechnology allows scientists to use biological, physical, and chemical concepts to deal with materials at the nanoscale in order to build tailored medicine delivery mechanisms and improve material qualities. Multiple factors explain the market growth of nano-sunscreens since consumers want better protection, and technology in the field of nanotechnology and materials science provides these capabilities. Nano-technology sunscreen products currently revolutionize the skincare market through cutting-edge business approaches focused on product performance and protection, together with product security and customer needs.

The paper explores strategic business options for nanotechnology-based sunscreens, analyzing traditional policies, scientific benefits, and consumer behavior. It highlights the collaboration between innovation, regulation, sustainability, and marketing in the rapidly emerging industry.

Types of Nanomaterials used

Nanotechnology has been extensively employed in cosmetics since titanium dioxide (TiO 2) and zinc oxide (ZnO) nanoparticles are inorganic UV filters in sunscreens. Such metal-oxide nanoparticles not only shield UV radiation but also enhance the texture and spreadability of products (Lu et al., 2018).

- ▶ Titanium dioxide (TiO₂) Nanoparticles: Titanium dioxide nanoparticles (TiO₂-NPs) represent a common ingredient in cosmetics that provides UV protection through the skin surface while maintaining their natural color. The extensive photoreactive nature of Titanium dioxide nanoparticles triggers the development of reactive oxygen species, potentially causing cellular damage. TiO₂-NPs receive protective surface coatings from silica and alumina before additional layers are added for better compatibility with cosmetic formulations. Titanium dioxide nanoparticles possess strong abilities to shield against UVA and UVB ultraviolet radiation waves. Their diminutive size and advanced refractive index characteristics make titanium dioxide nanoparticles change sunscreen products to a white tint that counteracts their attractive nature. The creation of TiO₂ nanoparticles with reduced photocatalytic potential through sol-gel synthesis makes them suitable for sunscreen applications because they prevent skin irritation (Chifamba, 2017).
- ▶ Zinc Oxide (ZnO) Nanoparticles: Being highly effective at UVA protection makes zinc oxide nanoparticles one of the standard ingredients used in sunscreen formulations. The nanoparticles exhibit high resistance to photodamage, which enables them to protect against UVA radiation, combined with a non-reactive property against other UV filters. This UV-blocking material provides fewer protections from UVB radiation compared to titanium dioxide. (Wong et al., 2020). The doping process of ZnO nanoparticles through the addition of elements such as Al and Na produces substantial improvements in their ability to protect against UV rays. Research has heightened attention on green approaches for synthesizing ZnO nanoparticles. Scientific studies demonstrate that Saccharomyces cerevisiae produces ZnO nanoparticles with antibacterial properties and the ability to decay through photocatalytic reactions. A research investigation showed how Polystichum squarrosum extract enabled biogenic synthesis of ZnO nanoparticles, which could act as both anti-oxidant and anti-diabetic agents (El-Sayed et al., 2024).
- ▶ Other Nanocarriers: Sunscreens can benefit from nanosized flavonoids as complementary ingredients, which enhance synthetic UV filter performance while improving SPF levels and sun protection capacity (Fonseca et al., 2023). The pharmaceutical industry values liposomes as bilayer vesicular systems based on phospholipids such as phosphatidylcholine because they present both a biocompatible nature and structural adaptability. Drug encapsulation, together with the rate of release and skin permeation of UV filters in sunscreens, exists due to their bilayer structure and phase transition properties and dimension variations. Liposomes serve as a flexible delivery system that contains diverse UV filters that can both dissolve in hydrophilic and lipophilic areas. A single sunscreen formulation utilizing lipophilic filters embedded in lipid bilayers, along with hydrophilic filters stored in the aqueous core, is possible due to the structure (Miranda et al., 2024).

Table 1
List of Nanoparticles used in Nano-based sunscreens

Nanaparticle/Carrier		Advantages	Dicadvantages	Doforor
Nanoparticle/Carrier	Production Method	Advantages	Disadvantages	References
Titanium Dioxide (TiO₂) Nanoparticles	Sol-gel synthesis; Surface coating (silica, alumina)	Strong UVA and UVB protection; reduced whitening with coating	High photoreactivity if uncoated; possible ROS generation	(Lu et al., 2018)
Zinc Oxide (ZnO) Nanoparticles	Doping (Al, Na); Green synthesis (microbes, plant extracts)	Broad UVA protection; photostable; inert with other filters	Less effective against UVB; aggregation tendency	(El-Sayed et al., 2024)
Liposomes	Phospholipid-based assembly	Deliver both hydrophilic and lipophilic UV filters; good skin permeability; biocompatible.	Stability issues; higher production cost	(Miranda et al., 2024)
Flavonoid-based Nanocarriers	Natural molecule loading	Enhance antioxidant activity and SPF; natural synergy with UV filters	Formulation complexity; sensitivity to oxidation	(Fonseca et al., 2023)
Nanocrystals	High-pressure homogenization; precipitation	Enhance water solubility and UV filter bioavailability; fast skin penetration.	Physical instability (aggregation, crystal growth)	(Shi et al., 2012)
Nanoemulsions	High-shear mixing; ultrasonication	Improve sunscreen spreadability, stability, and skin feel; enhance UV filter dispersion.	Require surfactants; risk of skin irritation if improperly formulated	(Galani et al., 2023)
Polymeric Nanoparticles (e.g., PLA, PLGA)	Emulsion polymerization; nanoprecipitation	Controlled release of UV filters; protective encapsulation; customizable properties	Biodegradability depends on the polymer and manufacturing complexity	(Vittala Murthy et al., 2022)
Solid Lipid Nanoparticles (SLNs)	Hot homogenization; cold homogenization	Improve UV filter stability; occlusive effect enhances skin hydration	Limited drug loading capacity; risk of crystallization	(Netto MPharm & Jose, 2018)
Nanostructured Lipid Carriers (NLCs)	Blend of solid and liquid lipids	Higher loading capacity than SLNs; good stability and skin compatibility	Potential instability during storage	(Abdel- Salam et al., 2017)

Mechanisms of Nano-based Sunscreens

The outer layer of skin functions as a defense mechanism while facing repeated exposure to solar radiation, together with environmental pollutants. Knee-deep exposure to sunshine promotes skin degeneration through photoaging, along with wrinkles and pigmentation development, and it might generate skin cancer. Oxygen species that act as reactive agents cause the majority of this skin damage. UV radiation hurts DNA proteins and cellular structures, resulting in inflammation, together with cellular degeneration. Research indicates that UV rays represent 90% of cancer development risks for skin aging and that nano-sized sunscreens improve the formulation's efficiency and both the protective durability and translucency of the product against harmful ultraviolet rays (Lin et al., 2024).

The physical blockers zinc oxide and titanium dioxide nanoparticles function as sun-blocking agents, which reflect and scatter UV rays, protecting the skin completely from UVA and UVB radiation. Sunscreens available in the market today are classified into chemical sunscreens and physical sunscreens. Chemical sunscreens use organic chemicals that absorb UV radiation and dissipate it as heat, whereas physical sunscreens use inorganic nanoparticles such as titanium dioxide and zinc oxide that form a physical barrier on the skin, reflecting and scattering UV radiation (Lyu et al., 2022).

Chemical sunscreens, also known as organic sunscreens, absorb high-energy UV radiation and emit harmless heat. UVB filters also prevent the 290-320nm wavelength that causes skin cancer and damage to DNA. UVA filters offer little shield against 320-400nm, the segment of the spectrum that causes photoaging and pigmentation in the skin, as well as skin cancer. Broad-spectrum chemical sunscreens protect against UVB, sunburn, skin cancer, and premature aging. They contain aminobenzoates, cinnamates, salicylates, octocrylene, ensulizole, and camphor derivatives as their major components (Lyu et al., 2022).

Nanotechnology in sunscreen products enhances UV-blocking properties, chemical stability, and formulation behavior by enhancing UV absorption and scattering, stability control, and formulation properties through primary mechanisms.

- ▶ UV Absorption and Scattering: The absorption of UVB radiation occurs to an exceptional degree by TiO₂ nanoparticles, while ZnO nanoparticles absorb both UVB and UVA wavelengths for complete spectrum protection. Inorganic nanoparticles, such as TiO 2 and ZnO, are UV scatterers. This decreases the quantity of UV passing through the skin and enhances the UV protection provided by sunscreen:
- ▶ Enhanced Stability and Delivery: The use of nanocarriers serves as a method to encapsulate UV filters for two purposes: blocking their penetration into skin and improving sunscreen actives' photoprotective properties. For pharmaceutical products, the encapsulation process within nanocarriers both blocks UV filter permeability and creates conditions suitable for formulation stability and mixable ingredients. Solid lipid nanoparticles and nanostructured lipid carriers represent a significant improvement that combines UV protection from their intrinsic ability to scatter UV light with their restricted permeation and stability properties (Andreani et al., 2020). New delivery systems, including nano-emulsions and liposomes, are also being investigated to further enhance the distribution and deposition of sunscreen actives on the skin surface for further increasing their protective effects (Aguilera et al., 2023).
- ▶ Enhanced Formulation Properties: UV filters found in conventional sunscreens result in a distinctive white pigmentation on the skin surface. Engineers succeeded in creating Nano-based formulations with

TiO₂ and ZnO nanoparticles because they managed to achieve transparency or minimize opacity, thus improving appearance. The water resistance of nano-based sunscreens performs at higher levels than traditional UV blocks. The nanocarriers create a durable skin surface film that is resistant to water removal because of their properties. The sunscreen creates a protective barrier on the skin, which protects against dangerous effects from the sun but enables safe tanning sessions, as shown in Fig. 3 (Chifamba, 2017).

Market Analysis of Nanotechnology-Based Sunscreen

Nanotechnology-based sunscreens have become a major component of the generally growing sunscreen market at the global level. Nanotechnology's incorporation into sunscreen products delivers multiple benefits, including superior UV protection, together with better aesthetics, while improving performance (Chauhan et al., 2022). The wide adoption of nanoparticles, particularly zinc oxide and titanium dioxide, in sunscreen products exists because these particles excel at scattering and reflecting UV rays to guard users from both UVA and UVB radiation. The rising global incidence of skin cancer, synergistically coupled with a heightened consumer consciousness pertaining to the deleterious ramifications of protracted sun exposure, constitutes a crucial impetus propelling the demand for sophisticated and efficacious sun protection interventions (Zhou et al., 2025). The market is experiencing growth because nanotechnology-based sunscreens now reach customers through multiple retail channels, including both virtual stores and traditional pharmaceutical outlets and specialized cosmetic outlets (Nitulescu et al., 2023).

Current Market Size and Growth Trends

A diverse group of multinational corporations, together with specialized companies, currently dominates the sunscreen market as they strive for market dominance through consumer preference acquisition. Top multinational corporations backed by extensive research programs use their advanced production sites and distribution networks to directly affect market direction and market competition (Bartoszewska et al., 2023). Specialized companies focus their business on particular market segments with their attention set on organic or mineral-based sunscreens for niche customer groups (Fytianos et al., 2020). The intense market competition intensifies due to retailers launching private-label products, which directly compete with main brands while offering lower prices. The outcome requires companies to maintain continuous innovation through strategic partnerships and effective marketing strategies to survive in this aggressive market sector (Karaev, 2023).

Consumer Preferences and Demands

Consumers are more concerned about touch, appearance, security, and texture of sunscreens. To avoid the unpleasant aesthetic impression, they seek products that are non-greasy, light, and fast-absorbent (Aguilera et al., 2023). Issues related to the health and environmental effects of chemical UV filters are on the rise. Because of this, an increasing number of individuals have resorted to using mineral sunscreens that have zinc oxide or titanium dioxide in nanoparticles- products that are largely considered to be safer and greener (Kumari & Virdi, 2023).

Consumers are moving towards the use of mineral-based sunscreens due to their transparency and clarity. That provides the shoppers with the assurance that a product suits their values. Consumers still demand more straightforward information, even though the application of nanoparticle filters is highly regulated. In the present day, skin-care companies are seeking sunscreens that go beyond protecting skin against UV light and provide skin-beneficial elements as well.

Market Segmentation

The market for sunscreens is highly susceptible to segmentation on the basis of varied parameters, including geographic location, product form, age, and distribution channel, thus making it possible for manufacturers to tailor their marketing campaigns to target distinct consumer segments effectively (Jesus et al., 2022). Geographic segmentation provides a picture of a canvas of variant market trends, where demand and consumer trends are shaped in a complex manner by the dynamics of climatic factors, the prevalence of unique skin phototypes within population groups, and the role of attitudinal factors that are culturally embedded in sun protection regimens (Cole et al., 2023). For example, parts of the world where ambient temperatures are high and solar irradiance is strong, like Australia, the Mediterranean region, and the southwestern United States, generally exhibit a greater likelihood of sunscreen use due to increased knowledge of the harmful consequences of extended sun exposure and the need for photoprotection (Symanzik et al., 2023).

Global Market Growth of Nanotechnology-Based Sunscreens

The international market for sunscreens formulated with nanotechnology has recorded an exponential rate of increase over the last several years due to increased exposure awareness of the deleterious properties of ultraviolet rays, combined with enhanced quality and physical acceptance of particle-nanotechnology-based sunscreens (Rambaran & Schirhagl, 2022). The boost in demand prompted impressive investments in research and development, bringing forward novel sunscreen products with increased UV protection, better skin feel, and less potential for photo-induced toxicity (Andreani et al., 2020).

Regulatory Landscape of Nanomaterials in Cosmetics

Regulatory controls focus primarily on the nanomaterial skin penetration ability and their biological interactions, which lead to toxicity and health effect concerns. The Food and Drug Administration in the United States, together with the European Commission, implemented detailed oversight procedures that monitor nanomaterial risks in cosmetic products. The established guidelines ensure both product safety and industry innovation for cosmetics manufacturers (Bilal & Iqbal, 2020; Festus-Ikhuoria et al., 2024).

Regulations Governing Nanomaterials in Cosmetics

Nano-material regulation in cosmetics differs substantially between different geographical regions because various jurisdictions apply different perspectives about safety risks and regulatory systems. The European Cosmetics Regulation No. 1223/2009 establishes detailed rules for nanomaterials found in cosmetic products (Karamanidou et al., 2021). Prior to market placement, all cosmetic items with nanomaterials must provide notice to the European Commission, while nanomaterials utilized for coloring substances, preservatives, and

UV filters need explicit regulatory approval (Ferreira et al., 2023). Nanomaterial safety assessment for cosmetics depends on scientific opinions provided by the Scientific Committee on Consumer Safety, which helps guide regulatory choices (Ferraris et al., 2021).

FDA and EU Regulations

The regulatory requirements of the FDA for nanoparticle safety in cosmetics include both material characteristics related to nanoform use and toxicological data about nanosized products (Pandey et al., 2024). The FDA controls nanotechnology applications in cosmetics through its authority over safety regulations without maintaining dedicated nanomaterial regulations. The EU regulations mandate that manufacturers must identify nanomaterials through terms followed by brackets containing "nano" next to each ingredient in product labels (Bartoszewska et al., 2023). Nanomaterials fall under the EU Cosmetic Regulation No. 1223/2009 because they are insoluble or biopersistent substances that come from intentional manufacturing processes showing external dimensions as well as internal structural characteristics between 1 and 100 nm (Gautam et al., 2022). These conditions enable proper regulatory enforcement. Under EU regulations, companies must submit nanomaterials for pre-usage safety examination, while the FDA takes a risk-based reactive stance toward nanomaterials in cosmetics (Shajar et al., 2023).

Labelling Requirements and Impact of Regulations on Business Strategies

The regulatory framework pertaining to nanomaterials in cosmetics requires labelling requirements together with safety standards to furnish consumers with essential information for product selection and maintain the security of cosmetics during their intended application. Most labelling requirements force cosmetic manufacturers to list nanomaterials in product ingredient listings and follow this information with parentheses containing the term "nano." International regulation demands such labelling to provide consumers with better visibility of products containing nanomaterials. A company within the cosmetics sector requires strong business strategies to adapt to the regulatory landscape because this framework governs product creation practices and factory production, together with marketing campaign approaches.. Insufficient nano-specific legislative measures implemented by the EU create business uncertainties for the industry sector (Shatkin et al., 2024). The innovation strategies of companies may change due to regulations because they focus either on developing safer novel nanomaterials or exploring alternative technologies without nanomaterial reliance (Cardoza et al., 2022).

Strategic Business Approaches: How to Succeed in the Nano-Sunscreen Market

The expanding nano-sunscreens market requires complete knowledge of strategic business strategies to sustain market leadership and grow sustainably because of heightened solar radiation awareness and nanotechnology advancement. (Andreani et al., 2020). Nanotechnology established a new innovation period through which scientists, along with engineers, can work with atomic and molecular scales for developing materials featuring uncommon properties. (Lyu et al., 2022).

All the following aspects demand strategic planning and careful consideration regarding the complexities of this innovative sector:

Product Development

Successful growth in the nano-sunscreen business requires extensive implementation of "Product Development Strategies" to transform nanomaterials for superior UV protection combined with improved skin feel while maintaining long-term stability (Lee et al., 2023; Reis-Mansur et al., 2023). Nano-sunscreen product manufacturing should aim to enhance texture and stability, along with improving skin feel by using advanced encapsulation methods and biocompatible polymer incorporation (Kim et al., 2023; Reis-Mansur et al., 2023). Nano-sunscreens obtain additional appeal when they incorporate natural ingredients and antioxidants since these components provide beneficial effects, including skin hydration and anti-inflammatory properties, and free radical protection (Badalkhani et al., 2023).

Creating the hybrid products of sunscreens offering the benefits of organic and inorganic filters can give broad-spectrum protection as well as minimize the skin irritations (Andreani et al., 2020; Lee et al., 2023). Testing of nanomaterials along with the usage of environmentally friendly materials becomes essential to solve safety matters related to nanotechnology (Karnwal & Malik, 2024; Wong et al., 2020).

Marketing and Branding

The successful marketing and branding of nanotechnology sunscreen products depend on effective communication of their special characteristics. Customers must trust nano-sunscreen items through clear safety information and scientific evidence confirming their performance and security measures (Effiong et al., 2019). Consumer understanding of nano-sunscreen science, combined with information about its superior capabilities compared to traditional options, and dispelling their concerns, constitutes the key.

The credibility of a company increases when it works with certified third parties while earning dermatologist endorsements and includes references to scientific research (Lyu et al., 2022). The strategy of targeting athletes and outdoor enthusiasts, along with people who have sensitive skin, enables Sun Bum to design personalized marketing campaigns and suitable product solutions (Anderlová & Pšurný, 2021; Fytianos et al., 2020; Tharakan & Lonczak, 2024).

Supply Chain and Manufacturing Strategies

Widespread production of high-quality nano-sunscreens depends on successful supply chains and manufacturing strategies that deliver cost-effective results. To achieve cost-effectiveness in nano-sunscreen production, the focus should be on obtaining premium nanomaterials from trusted suppliers who follow rigorous quality standards (Bilal & Iqbal, 2020; Shegokar & Nakach, 2020). Competitiveness depends on cost-effective production achieved by combining smart manufacturing processes and large-scale production benefits. For appealing to eco-conscious consumers and enhancing the brand's reputation, we can focus on implementing sustainable practices like waste reduction, energy conservation, and eco-friendly packaging throughout the supply chain management (Kazakova & Lee, 2022; Latifah & Soewarno, 2023; Lee, 2020).

Businesses can improve the sustainability and resilience of their supply chains by integrating environmental, social, and economic considerations into their practices (Holloway, 2024; Tundys & Wiśniewski, 2023). All entities that support customer requests from suppliers through transporters to warehouses, retailers, and customers make up the supply chain. To maintain strong relations with customers and to gain

competitive advantages for the long term, collaborations with suppliers are necessary, which also establishes the supply chain effectively. (Khan et al., 2022).

Pricing Strategies

Marketers of nano-sunscreens need to implement pricing strategies such as value-based pricing, together with competitive pricing and premium pricing, while taking into account consumer value perceptions, market competition, and brand positioning. Value-based pricing remains a suitable strategy for innovative nano-sunscreens because it determines prices through customer-perceived value of superior performance or exclusive advantages. Market share gains in price-sensitive segments may require businesses to use competitive pricing, which matches their prices to competitors (Galani et al., 2023; Vallano & Pontes, 2024). The establishment of premium prices against competitor rates is possible for nano-sunscreens when they offer unique formulations along with advanced features or possess established brand value (Gao, 2023).

Production expenses, research expenditures, and marketing costs need assessment to establish pricing methods. The supply chain behavior with functional and environmental preferences of customers needs consideration when making decisions (Liu et al., 2021). When customers represent diverse groups, their main consideration is price since it influences their buying practices and willingness to pay, and different attractive product features draw their attention (Andrianto & Aliffianto, 2020; Gao, 2023).

Distribution Strategies

Nano-sunscreen distribution methods require multiple selling channels to achieve wide consumer access. E-commerce platforms and direct-to-consumer websites serve as online channels that help companies connect with worldwide customers through convenient product information services (Boulaksil & Belkora, 2017; Satheeshkumar et al., 2022). Strategic partnerships between LSMU Sunscreen Solution Limited and retail pharmacies, along with supermarkets, as well as specialty stores, help reach major customer markets while boosting brand recognition. (Bilal & Igbal, 2020; Oliveira et al., 2022; Reis-Mansur et al., 2023).

New customers are more likely to try a product through the combination of free samples and promotional price discounts (Reis-Mansur et al., 2023; Solaiman et al., 2019). The supply chain must operate at its best level to transport products quickly to distribution sites in order to fulfill customer needs and avoid stock shortages. Our company should form strategic alliances with well-known brands in the beauty and skincare industry to access existing distribution channels and market knowledge systems (Oliveira et al., 2022; Takawira & Pooe, 2024). Distribution models combining mobile vans with micro-retailers create effective accessibility of products to underserved areas of emerging markets. (Boulaksil & Belkora, 2017).

Regulatory Compliance

Businesses in the nano-sunscreen industry must prioritize full compliance with multiple safety and efficacy regulations throughout every phase of their product development cycle. The strategic requirement to satisfy FDA safety and quality standards in America, European Commission standards in Europe, and equivalent agencies across other nations is essential for nano-sunscreens to fulfill their specifications (Bernauer et al., 2020; Dave et al., 2021; Oualikene-Gonin et al., 2023).

The regulatory approval process requires complete safety assessments of nanoparticles used in sunscreens, which requires evaluation of their penetration capability as well as toxicological effects and environmental impact. The labeling of nano-sunscreens must include full ingredient disclosure as well as nano-particle size statements together with potential hazard alerts to protect both consumers and comply with regulatory mandates. (Quiñones et al., 2021; Zou et al., 2022).

Consumer Education and Awareness Strategies

The success of nano-sunscreen products depends on how well consumers learn about them and how widely consumers use them, while public education strategies affect their acceptance and understanding of advantages versus risks. However, it is essential to provide clear scientific explanations of nanotechnology to earn consumer trust in the technology (Effiong et al., 2019). The presentation of nano-sunscreen advantages, including better UV safety, improved look, and positive impacts on skin wellness, will lead consumers to select these products instead of traditional sunscreens. (Araki & Baby, 2025; Lyu et al., 2022).

Addressing Safety and Environmental Concerns

The sustainable market adoption and acceptance of nano-sunscreen depend on resolving safety as well as environmental issues linked to nano-materials (Wong et al., 2020). It is vital to perform a complete risk analysis of nano-materials to discover and handle possible health and environmental risks (Arvidsson, 2018; Festus-Ikhuoria et al., 2024).

The reduction of nano-material leakage into the environment becomes possible through various measures that operate during nano-sunscreen manufacturing, up until use and disposal. Eco-friendly nano-materials and formulations need development for sustainable operations to protect the environment by using biodegradable, non-toxic materials which follow green chemistry principles (Lehutso & Thwala, 2021; Lehutso et al., 2021; Patiño-Ruiz et al., 2021).

Technology Integration and Digital Innovation

Advanced technologies together with digital innovation help improve all business areas of nano-sunscreen operations, including product creation and marketing function, and sales. The techniques (Al and ML) generate customized customer interactions that act as catalysts for improving technical creations as well as user interaction processes (Bartoszewska et al., 2023; Chandran et al., 2023; Lyu et al., 2022; Rambaran & Schirhagl, 2022).

Revenue growth becomes possible when organizations establish e-commerce platforms and mobile apps, as well as online marketplaces, to promote direct consumer sales and expand market coverage for nanosunscreen products. The adoption of cryptocurrency blockchain systems enables tracking of authentic nanomaterials and products through their supply chains, which boosts management quality and consumer trust (Bilal & Iqbal, 2020; Effiong et al., 2019; Rogerson & Parry, 2020). Telemedicine and remote monitoring technologies allow customers to have virtual dermatologist consultations for personalized skincare advice and remote skin health monitoring, which improves their satisfaction with services (De, 2020; Purnama et al., 2023).

Intellectual Property and Patent Strategies

The protection of intellectual property through strategic patent implementation is essential for the commercial success of nano-sunscreen products because it both maintains a competitive edge and maximizes their market value (Khan et al., 2022). Patents filed for new nano-material compositions alongside manufacturing techniques and applications for products enable businesses to establish exclusive rights that protect their innovations from copycats and establish market entry barriers (Manzini & Lazzarotti, 2016).

Corporate Social Responsibility (CSR) and Ethical Commitments

Nano-sunscreen manufacturers who embrace social responsibility through ethical initiatives will earn better reputations from customers and stakeholders while creating sustainable operations. Firms showing devotion to social responsibilities through ethical labor practices and responsible sourcing and community activities generate strong social effects (Hu & Zeng, 2024; Leal Filho et al., 2023; Mishra & Awasthi, 2024;

The Future of Nanotechnology Sunscreens: Trends, Impacts, and Recommendations

The nanotechnology sunscreen market is expected to grow as more individuals are getting to learn of the risks of applying ultraviolet rays and the increasing number of people are seeking superior products of sunscreens that are high-performing and well-optimized (Solaiman et al., 2019). Nanotechnology innovations enable the development of sunscreen formulations with better performance properties, better sensory properties, and higher transparency as they solve many of the limitations of the formulations (Festus-Ikhuoria et al., 2024). In the spheres of extending the release system, giving sunscreen a better hydration and antiaging effect, and a carbon nanobud revolutionizing the cosmetic industry, researchers are busy at work. (Fytianos et al., 2020).

Nanotechnology sunscreens will be transformed in an entirely new way by new technological advances and research data. Studies on nanometer-sized molecules in sunscreens indicate a promising outcome due to the presence of the synthesis behavior of such molecules at work with synthetic UV filters (Fonseca et al., 2023). Scientific studies should investigate inorganic nanoparticle such as zinc oxide and titanium dioxide to enhance their capacity to absorb UV radiation at the same time with the aim of minimizing the risks of skin absorption. Improved delivery and stability of sunscreen actives can now be achieved with continued research in the appropriate encapsulation methodologies, such as liposomes and polymeric nanoparticles (Bilal & Iqbal, 2020).

The new protective products combine various categories of UV filters with botanical ingredients and vitamins, DNA repair enzymes, and film-forming polymers to enhance their sun protection ability. Nanostructured lipid carriers are significant pharmaceutical delivery systems due to their improved drugloading capabilities, coupled with improved storage activity, skin permeability, and reduction of undesirable side effects. The increasing alarm over the toxicology risks of sunscreen components within the human body drives the market to seek superior carrier systems that deliver the best of sun protection and reduce the absorption of drugs by the blood (Sahoo et al., 2022).

The nanotechnology sunscreen is a market that demands the firm to adopt a new holistic approach to research commitment and strategic alliances, and high-value regulatory reputations (Rambaran & Schirhagl,

2022). Companies engaging in cutting-edge research will tap into nanotechnology advances to create new solutions of sunscreens with both higher quality and higher levels of protection (Aguilera et al., 2023). For the use of nanomaterials in cosmetics, companies collaborate with research institutions, materials scientists, and toxicologists to develop new technologies and meet regulatory guidelines as they determine effective delivery mechanisms for sunscreens (Andreani et al., 2020). Nanostructured lipid carriers with nanoemulsions maximize the efficacy of UVA and UVB filters, including diethylamino hydroxybenzyl hexyl benzoate and bemotrizinol, and octyl methoxycinnamate and avobenzone. There are 2 advantages of nanoencapsulation. First, nanoencapsulation protects the UV filters so they uniformly spread across the surface of the skin(An et al., 2021).

Current research has shown skepticism about nanomaterial penetration into the skin since this mechanism poses risks for damage or toxicity to regulatory processes. Stringent regulations now control nanoparticles in cosmetics like sunscreens, as consumers are anxious that nanoparticles can penetrate through their skin prior to entering the bloodstream to cause possible health-related harms. Overall universal safety standards, along with quantified assessment parameters, will be essential so that cosmetic nanoparticles can remain effective, while also ensuring public safety and gaining consumer trust in nanotechnology-embedded cosmetics (Ferraris et al., 2021). A full life cycle analysis of nanomaterials needs to be explored in order to mitigate the environmental risks from nanoparticulate UV filters while considering how they are synthesized and disposed of in waste streams. Assessing them on land would entail determining the environmental release of nanomaterials across waterways such as rivers and lakes, and waste management systems, as these releases can have adverse impacts. Studies in a laboratory on nanomaterials contained in sunscreens should encompass release scenarios common to the environment (Labille et al., 2020).

Conclusion

Innovation in sunscreens has arisen from breakthrough nanotechnology that delivers improved UV protection with cosmetic benefits. The mass market success of Nanotechnology cannot simply be achieved from its technical aspects due to the need for strategic business plans. The nano-sunscreens market requires legitimate growth strategies based on product development, along with regulatory management and an effective supply chain with market specificity, with ethical practices. Long-term sustainable success in this sector depends upon managing regulatory hurdles and consumer skepticism, along with environmental management. Companies that are able to align scientific innovations with ethical business practices will be the leaders of the marketplace by developing new benchmarks for sun protection.

References

- Abdel-Salam, F. S., Ammar, H. O., Elkheshen, S. A., & Mahmoud, A. A. (2017). Anti-inflammatory sunscreen nanostructured lipid carrier formulations. *Journal of drug delivery science and technology*, *37*, 13-19. https://doi.org/10.1016/j.jddst.2016.10.014
- Aguilera, J., Gracia-Cazaña, T., & Gilaberte, Y. (2023). New developments in sunscreens. *Photochemical & Photobiological Sciences*, *22*(10), 2473-2482. https://doi.org/10.1007/s43630-023-00453-x
- An, Q., Ni, X., Liu, D., Zhang, Y., & Cao, Y. (2021). Preparation and evaluation of polymer-encapsulated UV filter nanocapsules with miniemulsion polymerization. *Journal of Dispersion Science and Technology*, *42*(11), 1593-1600. https://doi.org/10.1080/01932691.2020.1775635
- Anderlová, D., & Pšurný, M. (2021). Czech Consumer On The Luxury Skincare Cosmetics Market. *Acta academica*, *21*(2), 5-16. https://doi.org/10.25142/aak.2021.008
- Andreani, T., Dias-Ferreira, J., Fangueiro, J. F., Souza, A., Kiill, C. P., Gremiao, M. P. D., García, M. L., Silva, A. M., & Souto, E. B. (2020). Formulating octyl methoxycinnamate in hybrid lipid-silica nanoparticles: An innovative approach for UV skin protection. *Heliyon*, *6*(5). https://www.cell.com/heliyon/fulltext/S2405-8440(20)30676-9
- Andrianto, N., & Aliffianto, A. Y. (2020). Brand image is among the purchase decision determinants. *Jurnal Studi Komunikasi*, *4*(3), 700-715. https://repository.dinamika.ac.id/id/eprint/6442/
- Araki, S. M., & Baby, A. R. (2025). New Perspectives on Titanium Dioxide and Zinc Oxide as Inorganic UV Filters: Advances, Safety, Challenges, and Environmental Considerations. *Cosmetics*, *12*(2), 77. https://www.mdpi.com/2079-9284/12/2/77#
- Arvidsson, R. (2018). *Risk assessments show engineered nanomaterials to be of low environmental concern*. In: ACS Publications.
- Badalkhani, O., Pires, P. C., Mohammadi, M., Babaie, S., Paiva-Santos, A. C., & Hamishehkar, H. (2023). Nanogel containing gamma-oryzanol-loaded nanostructured lipid carriers and TiO2/MBBT: a synergistic nanotechnological approach of potent natural antioxidants and nanosized UV filters for skin protection. *Pharmaceuticals*, *16*(5), 670. https://doi.org/10.3390/ph16050670
- Bartoszewska, M., Adamska, E., Kowalska, A., & Grobelna, B. (2023). Novelty cosmetic filters based on nanomaterials composed of titanium dioxide nanoparticles. *Molecules*, *28*(2), 645. https://www.mdpi.com/1420-3049/28/2/645
- Bernauer, U., Bodin, L., Chaudhry, Q., Coenraads, P. J., Dusinska, M., Gaffet, E., Panteri, E., Rogiers, V., Rousselle, C., & Stepnik, M. (2020). The SCCS guidance on the safety assessment of nanomaterials in cosmetics. *Regulatory toxicology and pharmacology*, *112*, 104611. https://doi.org/10.1016/j.yrtph.2021.105046
- Bilal, M., & Iqbal, H. M. (2020). New insights into unique features and the role of nanostructured materials in cosmetics. *Cosmetics*, 7(2), 24. https://www.mdpi.com/2079-9284/7/2/24#
- Boulaksil, Y., & Belkora, M. J. (2017). Distribution strategies toward nanostores in emerging markets: The Valencia case. *Interfaces*, *47*(6), 505-517. https://doi.org/10.1287/inte.2017.0914
- Cardoza, C., Nagtode, V., Pratap, A., & Mali, S. N. (2022). Emerging applications of nanotechnology in cosmeceutical health science: Latest updates. *Health Sciences Review*, *4*, 100051. https://doi.org/10.1016/j.hsr.2022.100051

- Chandran, R. R., Thomson, B. I., Natishah, A., Mary, J., & Nachiyar, V. (2023). Nanotechnology in plastic degradation. *Biosciences Biotechnology Research Asia*, 20(1), 53-68. http://dx.doi.org/10.13005/bbra/3068
- Chauhan, R., Kumar, A., Tripathi, R., & Kumar, A. (2022). Advancing of zinc oxide nanoparticles for cosmetic applications. In *Handbook of consumer Nanoproducts* (pp. 1-16). Springer.
- Chifamba, J. (2017). Development, safety and efficacy evaluation of actinic damage retarding nanopharmaceutical treatments in oculocutaneous albinism. http://hdl.handle.net/10646/3210
- Ciambelli, P., La Guardia, G., & Vitale, L. (2020). Nanotechnology for green materials and processes. In *Studies in surface science and catalysis*, *179*, 97-116). Elsevier. https://doi.org/10.1016/B978-0-444-64337-7.00007-0
- Cole, Y., Ilyas, A. M., Ilyas, E. N., & ILYAS, E. N. (2023). Availability of adequate photoprotection for skin of color. *Cureus*, *15*(8). https://doi.org/10.7759/cureus.42794
- Dave, V., Sur, S., & Gupta, N. (2021). Current Framework, Ethical Consideration and Future Challenges of Regulatory Approach for Nano-Based Products. *Nanopharmaceutical advanced delivery systems*, 447-472. https://doi.org/10.1002/9781119711698.ch19
- De, A. (2020). Next-generation technologies in dermatology: Use of artificial intelligence and mobile applications. *Indian Journal of Dermatology*, *65*(5), 351. https://doi.org/10.4103/ijd.lJD_433_20
- Effiong, D. E., Uwah, T. O., Jumbo, E. U., & Akpabio, A. E. (2019). Nanotechnology in cosmetics: basics, current trends and safety concerns—A review. *Advances in nanoparticles*, *9*(1), 1-22.
- El-Sayed, A. F., Aboulthana, W. M., Sherief, M. A., El-Bassyouni, G. T., & Mousa, S. M. (2024). Synthesis, structural, molecular docking, and in vitro biological activities of Cu-doped ZnO nanomaterials. *Scientific Reports*, *14*(1), 9027. https://doi.org/10.1038/s41598-024-59088-2
- Ferraris, C., Rimicci, C., Garelli, S., Ugazio, E., & Battaglia, L. (2021). Nanosystems in cosmetic products: A brief overview of functional, market, regulatory and safety concerns. *Pharmaceutics*, *13*(9), 1408. https://www.mdpi.com/1999-4923/13/9/1408
- Ferreira, L., Pires, P. C., Fonseca, M., Costa, G., Giram, P. S., Mazzola, P. G., Bell, V., Mascarenhas-Melo, F., Veiga, F., & Paiva-Santos, A. C. (2023). Nanomaterials in cosmetics: An outlook for European regulatory requirements and a step forward in sustainability. *Cosmetics*, *10*(2), 53. https://www.mdpi.com/2079-9284/10/2/53
- Festus-Ikhuoria, I. C., Obiuto, N. C., Adebayo, R. A., & Olajiga, O. K. (2024). Nanotechnology in consumer products: A review of applications and safety considerations. *World Journal of Advanced Research and Reviews*, *21*(3), 2050-2059.
- Fonseca, M., Rehman, M., Soares, R., & Fonte, P. (2023). The impact of flavonoid-loaded nanoparticles in the UV protection and safety profile of topical sunscreens. *Biomolecules*, *13*(3), 493. https://www.mdpi.com/2218-273X/13/3/493
- Fytianos, G., Rahdar, A., & Kyzas, G. Z. (2020). Nanomaterials in cosmetics: Recent updates. *Nanomaterials*, 10(5), 979. https://www.mdpi.com/2079-4991/10/5/979
- Galani, E., Galatis, D., Tzoka, K., Papadimitriou, V., Sotiroudis, T. G., Bonos, A., Xenakis, A., & Chatzidaki, M. D. (2023). Natural Antioxidant-Loaded Nanoemulsions for Sun Protection Enhancement. *Cosmetics*, *10*(4), 102. https://www.mdpi.com/2079-9284/10/4/102

- Gao, R. (2023). On the importance of pricing strategy in marketing strategy: A case study of lululemon. *Frontiers in Business, Economics and Management*, *10*(1), 158-161. https://doi.org/10.54097/fbem.v10i1.10234
- Gautam, P., Ghanghas, D., Mittal, P., Gupta, V., & Kanika, D. (2022). Regulatory framework of cosmetic in the European Union. *Toxicol. Commun*, *4*(3), 13. https://doi.org/10.53388/20220202013
- Holloway, S. (2024). The Role of Inventory Management in Achieving Sustainability in Supply Chains. *Preprints*.
- Hu, Y., & Zeng, Y. (2024). Achieving sustainable operations: challenges, countermeasures, and the case of Unilever. In SHS Web of Conferences (Vol. 181, p. 01036). EDP Sciences. https://doi.org/10.1051/shsconf/202418101036
- Jesus, A., Augusto, I., Duarte, J., Sousa, E., Cidade, H., Cruz, M. T., Lobo, J. M. S., & Almeida, I. F. (2022). Recent Trends on UV filters. *Applied Sciences*, *12*(23), 12003. https://www.mdpi.com/2076-3417/12/23/12003
- Karaev, F. (2023). The Impact of Competitive Strategies on Firm Performance: The Mediating Role of Market Orientation and Innovation: An Empirical Study of the Georgian Beverage Sector. *Technology and Investment*, *14*(2), 119-135. https://doi.org/10.4236/ti.2023.142007
- Karamanidou, T., Bourganis, V., Gatzogianni, G., & Tsouknidas, A. (2021). A review of the EU's regulatory framework for the production of nano-enhanced cosmetics. *Metals*, *11*(3), 455. https://doi.org/10.3390/met11030455
- Karnwal, A., & Malik, T. (2024). Nano-revolution in heavy metal removal: engineered nanomaterials for cleaner water. *Frontiers in Environmental Science*, *12*, 1393694. https://doi.org/10.3389/fenvs.2024.1393694
- Kaur, K., Jayarambabu, N., & Rao, K. V. (2022). Comparative Study of Chemo-Bio Synthesized Mgo Nanoparticle on Maize Seed Germination. IOP Conference Series: Materials Science and Engineering, https://doi.org/10.1088/1757-899X/1225/1/012045
- Kazakova, E., & Lee, J. (2022). Sustainable manufacturing for a circular economy. *Sustainability*, *14*(24), 17010. https://www.mdpi.com/2071-1050/14/24/17010
- Khan, S. A. R., Waqas, M., Honggang, X., Ahmad, N., & Yu, Z. (2022). Adoption of innovative strategies to mitigate supply chain disruption: COVID-19 pandemic. *Operations Management Research*, *15*(3), 1115-1133. https://doi.org/10.1007/s12063-021-00222-y
- Kim, N., Kim, Y., Yun, J.-M., Jeong, S.-K., Lee, S., Lee, B. Z., & Shim, J. (2023). Surface Coating of titanium dioxide nanoparticles with a polymerizable chelating agent and its physicochemical property. *ACS omega*, *8*(21), 18743-18750. https://doi.org/10.1021/acsomega.3c00734
- Kumari, R., & Virdi, H. S. (2023, September). Titanium dioxide nanoparticles in cosmetics. In *AIP Conference Proceedings* (Vol. 2735, No. 1, p. 030006). AIP Publishing LLC. https://doi.org/10.1063/5.0141241
- Labille, J., Catalano, R., Slomberg, D., Motellier, S., Pinsino, A., Hennebert, P., Santaella, C., & Bartolomei, V. (2020). Assessing sunscreen lifecycle to minimize environmental risk posed by nanoparticulate UV-filters—a review for safer-by-design products. *Frontiers in Environmental Science*, 8, 101. https://doi.org/10.3389/fenvs.2020.00101
- Latifah, S. W., & Soewarno, N. (2023). The environmental accounting strategy and waste management to achieve MSME's sustainability performance. *Cogent Business & Management*, *10*(1), 2176444. https://doi.org/10.1080/23311975.2023.2176444
- Leal Filho, W., Trevisan, L. V., Eustachio, J. H. P. P., Rampasso, I. S., Anholon, R., Platje, J., Will, M., Doni, F., Mazhar, M., & Borsatto, J. M. L. S. (2023). Assessing ethics and sustainability standards in corporate practices. *Social Responsibility Journal*, *20*(5), 880-897. https://irep.ntu.ac.uk/id/eprint/49949

- Lee, D. H. (2020). Strategies on pricing, greenness degree, and carbon emission reduction in supply chains under single and cross distributions of green and nongreen products. *Mathematical Problems in Engineering*, 2020(1), 1246536. https://doi.org/10.1155/2020/1246536
- Lee, J.-H., Lee, G.-S., Park, E.-N., Jo, D.-H., Kim, S.-W., & Lee, H.-C. (2023). Synthesis of planar-type ZnO powder in non-nano scale dimension and its application in ultraviolet protection Cosmetics. *Materials*, *16*(5), 2099. https://www.mdpi.com/1996-1944/16/5/2099
- Lehutso, R. F., & Thwala, M. (2021). Assessment of nanopollution from commercial products in water environments. *Nanomaterials*, *11*(10), 2537. https://www.mdpi.com/2079-4991/11/10/2537
- Lehutso, R. F., Wesley-Smith, J., & Thwala, M. (2021). Aquatic toxicity effects and risk assessment of 'Form Specific'product-released engineered nanomaterials. *International Journal of Molecular Sciences*, *22*(22), 12468. https://www.mdpi.com/1422-0067/22/22/12468
- Lin, C.-H., Lin, M.-H., Chung, Y.-K., Alalaiwe, A., Hung, C.-F., & Fang, J.-Y. (2024). Exploring the potential of the nano-based sunscreens and antioxidants for preventing and treating skin photoaging. *Chemosphere*, 347, 140702. https://doi.org/10.1016/j.chemosphere.2023.140702
- Liu, K., Li, W., Cao, E., & Lan, Y. (2021). Behaviour-based Pricing in the Green Product Supply Chain. https://orcid.org/0000-0001-8307-4934
- Lyu, W., Qian, M., & Yang, F. (2022). Nanoparticles in sunscreen: exploration of the effect and harm of titanium oxide and zinc oxide. *Highlights Sci. Eng. Technol*, *13*, 155-162. https://doi.org/10.54097/hset.v13i.1345
- Manzini, R., & Lazzarotti, V. (2016). Intellectual property protection mechanisms in collaborative new product development. *R&D Management*, *46*(S2), 579-595. https://doi.org/10.1111/radm.12126
- Matta, M. K., Zusterzeel, R., Pilli, N. R., Patel, V., Volpe, D. A., Florian, J., Oh, L., Bashaw, E., Zineh, I., & Sanabria, C. (2019). Effect of sunscreen application under maximal use conditions on plasma concentration of sunscreen active ingredients: a randomized clinical trial. *Jama*, *321*(21), 2082-2091. https://orcid.org/10.1001/jama.2019.5586
- Miranda, J. A., Cruz, Y. F. d., Girão, Í. C., Souza, F. J. J. d., Oliveira, W. N. d., Alencar, É. d. N., Amaral-Machado, L., & Egito, E. S. T. d. (2024). Beyond Traditional Sunscreens: A Review of Liposomal-Based Systems for Photoprotection. *Pharmaceutics*, *16*(5), 661. https://doi.org/10.3390/pharmaceutics16050661
- Mishra, A., & Awasthi, S. (2024). Employee Engagement: Building a Green Workplace Culture. *Management Dynamics*, *24*(1), 6. https://doi.org/10.57198/2583-4932.1333
- Netto MPharm, G., & Jose, J. (2018). Development, characterization, and evaluation of sunscreen cream containing solid lipid nanoparticles of silymarin. *Journal of cosmetic dermatology*, *17*(6), 1073-1083. https://doi.org/10.1111/jocd.12470
- Nitulescu, G., Lupuliasa, D., Adam-Dima, I., & Nitulescu, G. M. (2023). Ultraviolet filters for cosmetic applications. *Cosmetics*, *10*(4), 101. https://www.mdpi.com/2079-9284/10/4/101?utm_campaign=large-spectre-spf-45
- Oliveira, C., Coelho, C., Teixeira, J. A., Ferreira-Santos, P., & Botelho, C. M. (2022). Nanocarriers as active ingredients enhancers in the cosmetic industry—The European and North America regulation challenges. *Molecules*, *27*(5), 1669. https://www.mdpi.com/1420-3049/27/5/1669
- Oualikene-Gonin, W., Sautou, V., Ezan, E., Bastos, H., Bellissant, E., Belgodère, L., Maison, P., Ankri, J., & ANSM, S. A. B. o. t. (2023). Regulatory assessment of nano-enabled health products in public health interest.

- Position of the scientific advisory board of the French National Agency for the Safety of Medicines and Health Products. *Frontiers in Public Health*, *11*, 1125577. https://doi.org/10.3389/fpubh.2023.1125577
- Pandey, A. S., Bawiskar, D., Wagh, V., Pandey III, A. S., & WAGH, V. (2024). Nanocosmetics and skin health: a comprehensive review of nanomaterials in cosmetic formulations. *Cureus*, *16*(1). https://doi.org/10.7759/cureus.52754
- Patiño-Ruiz, D. A., Meramo-Hurtado, S. I., González-Delgado, A. n. D., & Herrera, A. (2021). Environmental sustainability evaluation of iron oxide nanoparticles synthesized via green synthesis and the coprecipitation method: A comparative life cycle assessment study. *ACS omega*, *6*(19), 12410-12423. https://doi.org/10.1021/acsomega.0c05246
- Purnama, I., Hernanda, A., Rachmadi, R., Nugroho, S., Purnomo, M., Ratna, A., Nurtanio, I., Hidayati, A., & Rusdiansyah, A. (2023). Intelligent Teledermatology System: A Case of Implementing Artificial Intelligence-Based Services in Healthcare Supply Chain. *Operations and Supply Chain Management: An International Journal*, *16*(1), 140-151. http://doi.org/10.31387/oscm0520379
- Quiñones, R., Moreno, S., Shoup, D., Klein, M., Westfall, T. D., & Damai, A. (2021). Examining particle size of inorganic active ingredients within sunscreens using dynamic light scattering. *Journal of chemical education*, *98*(4), 1371-1380. https://doi.org/10.1021/acs.jchemed.0c00939
- Rajasekar, M., Mary, J., Sivakumar, M., & Selvam, M. (2024). Recent developments in sunscreens based on chromophore compounds and nanoparticles. *RSC advances*, *14*(4), 2529-2563. https://doi.org/10.1039/D3RA08178H
- Rambaran, T., & Schirhagl, R. (2022). Nanotechnology from lab to industry–a look at current trends. *Nanoscale advances*, *4*(18), 3664-3675. https://doi.org/10.1039/D2NA00439A
- Reis-Mansur, M. C. P. P., Firmino Gomes, C. C., Nigro, F., Ricci-Júnior, E., de Freitas, Z. M. F., & Dos Santos, E. P. (2023). Nanotechnology as a tool for optimizing topical photoprotective formulations containing buriti oil (Mauritia flexuosa) and dry aloe vera extracts: Stability and cytotoxicity evaluations. *Pharmaceuticals*, 16(2), 292. https://www.mdpi.com/1424-8247/16/2/292
- Rogerson, M., & Parry, G. C. (2020). Blockchain: case studies in food supply chain visibility. *Supply Chain Management: An International Journal*, *25*(5), 601-614. https://doi.org/10.1108/SCM-08-2019-0300
- Ruiz-Gutiérrez, G., Rodríguez-Romero, A., Tovar-Sánchez, A., & Viguri Fuente, J. R. (2022, August). Analysis and modeling of sunscreen ingredients' behavior in an aquatic environment. In *Oceans* (Vol. 3, No. 3, pp. 340-363). MDPI. https://doi.org/10.3390/oceans3030024
- Sahoo, L., Patro, C. S., Jena, G. K., Patro, N., & Satapathy, S. (2022). A Focus on Fabrication, Characterization, Stability, Skin Targeting, Patent, Safety and Toxicity of Nanostructured Lipid Carrier. *Journal of pharmaceutical research international*, 34(17B), 49-76. https://doi.org/10.9734/JPRI/2022/v34i17B35771
- Santos, A. C., Morais, F., Simões, A., Pereira, I., Sequeira, J. A., Pereira-Silva, M., Veiga, F., & Ribeiro, A. (2019). Nanotechnology for the development of new cosmetic formulations. *Expert opinion on drug delivery*, 16(4), 313-330. https://doi.org/10.1080/17425247.2019.1585426
- Satheeshkumar, D. R., Krishnan, D. S. G., Rawath, S. S., & S J, A. K. (2022). A Study on Distribution Channel Strategy: Retailers' Perspective. *Rangasamy, S., Krishnan, SG, Rawath, S., Rakshith, M., & Ajith Kumar, S.(2022, September 27). A STUDY ON DISTRIBUTION CHANNEL STRATEGY: RETAILERS'PERSPECTIVE. International Journal for Innovative Engineering and Management Research, 11(9), 240-252. https://doi.org/10.48047/IJIEMR/V11/ISSUE09/28*

- Serpone, N. (2021). Sunscreens and their usefulness: have we made any progress in the last two decades? *Photochemical & Photobiological Sciences*, 20, 189-244. https://doi.org/10.1007/s43630-021-00013-1
- Shajar, F., Saleem, S., Mushtaq, N. U., Shah, W. H., Rasool, A., Padder, S. A., Tahir, I., & Rehman, R. U. (2023). Regulatory and ethical issues raised by the utilization of nanomaterials. In *Interaction of Nanomaterials with Living Cells* (pp. 899-924). Springer. https://doi.org/10.1007/978-981-99-2119-5_31
- Shatkin, J. A., Ede, J., & Ong, K. (2024). Latest Developments in the Risk Assessment of Nanomaterials: A Framework for Advanced Materials and Emerging Technologies. *Human and Ecological Risk Assessment: Theory and Practice, 1,* 583-608. https://doi.org/10.1002/9781119742975.ch15
- Shegokar, R., & Nakach, M. (2020). Large-scale manufacturing of nanoparticles—An industrial outlook. In *Drug delivery aspects* (pp. 57-77). Elsevier.
- Solaiman, S., Algie, J., Bakand, S., Sluyter, R., Sencadas, V., Lerch, M., Huang, X.-F., Konstantinov, K., & Barker, P. J. (2019). Nano-sunscreens–a double-edged sword in protecting consumers from harm: viewing Australian regulatory policies through the lenses of the European Union. *Critical reviews in toxicology*, 49(2), 122-139. https://doi.org/10.1080/10408444.2019.1579780
- Symanzik, C., Ludewig, M., Rocholl, M., & John, S. M. (2023). Photoprotection in occupational dermatology. *Photochemical & Photobiological Sciences*, *22*(6), 1213-1222. https://doi.org/10.1007/s43630-023-00385-6
- Takawira, B., & Pooe, R. I. (2024). Supply chain disruptions during COVID-19 pandemic: Key lessons from the pharmaceutical industry. *South African Journal of Business Management*, *55*(1), 4048. https://hdl.handle.net/10520/ejc-busman_v55_n1_a4048
- Tharakan, M., & Lonczak, L. (2024). Supporting Skin Structure and Its Barrier Functions with Evidence-Based Skin Care Ingredients. *Journal of Cosmetics, Dermatological Sciences and Applications, 14*(2), 200-210. https://doi.org/10.4236/jcdsa.2024.142013
- Tundys, B., & Wiśniewski, T. (2023). Triple bottom line aspects and sustainable supply chain resilience: A structural equation modelling approach. *Frontiers in Environmental Science*, *11*, 1161437. https://doi.org/10.3389/fenvs.2023.1161437
- Vallano, A., & Pontes, C. (2024). Escalating costs of innovative medicines: perspective and proposals. *Frontiers in Public Health*, *12*, 1449707. https://doi.org/10.3389/fpubh.2024.1449707
- Vittala Murthy, N. T., Paul, S. K., Chauhan, H., & Singh, S. (2022). Polymeric nanoparticles for transdermal delivery of polyphenols. *Current Drug Delivery*, *19*(2), 182-191. https://doi.org/10.2174/1567201818666210720144851
- Wong, S. W., Zhou, G.-J., Leung, P. T., Han, J., Lee, J.-S., Kwok, K. W., & Leung, K. M. (2020). Sunscreens containing zinc oxide nanoparticles can trigger oxidative stress and toxicity to the marine copepod Tigriopus japonicus. *Marine Pollution Bulletin*, *154*, 111078. https://doi.org/10.1016/j.marpolbul.2020.111078
- Zhou, L., Zhong, Y., Han, L., Xie, Y., & Wan, M. (2025). Global, regional, and national trends in the burden of melanoma and non-melanoma skin cancer: Insights from the global burden of disease study 1990–2021. *Scientific reports*, *15*(1), 5996. https://doi.org/10.1038/s41598-025-90485-3
- Zou, W., Ramanathan, R., Urban, S., Sinclair, C., King, K., Tinker, R., & Bansal, V. (2022). Sunscreen testing: A critical perspective and future roadmap. *TrAC Trends in Analytical Chemistry*, *157*, 116724. https://doi.org/10.1016/j.trac.2022.116724