Impact of Big Data Analytics on Organizational Performance: The Role of Business Analytics, Decision-Making Quality and Sustainability

Authors

  • Alisha Kamran Khan Masters of Business Administration, Marketing, Karachi University Business School (KUBS), Faculty of Management & Administrative Sciences, University of Karachi, Karachi, Sindh, Pakistan.
  • Dr. Sohaib Uz Zaman Assistant Professor, Karachi University Business School (KUBS), Faculty of Management & Administrative Sciences, University of Karachi, Karachi, Sindh, Pakistan. https://orcid.org/0000-0002-0135-3292
  • Syed Hasnain Alam Karachi University Business School (KUBS), Faculty of Management & Administrative Sciences, University of Karachi, Karachi, Sindh, Pakistan. https://orcid.org/0000-0002-5008-7365

DOI:

https://doi.org/10.63062/trt/V24.069

Keywords:

Big Data Analytics, Organizational Performance, Business Analytics Capacity, Decision-Making Quality, Sustainable Product Development

Abstract

The research analyzes Big Data Analytics effects on organizational results through studies of business analytics capability improvement alongside better decision quality and sustainable product development outcomes. Organizations that utilize big data efficiently improve both their operational speed and their ability to process and utilize data which enables better decisions and innovative sustainable practices. Evidence shows that big data integration as a strategic business process component creates substantial organizational improvements which supply essential knowledge for professionals and academics alike. The research demonstrates strong evidence of performance gains yet points to the necessity for additional investigations about these relationships throughout different industry sectors.

Author Biography

  • Syed Hasnain Alam, Karachi University Business School (KUBS), Faculty of Management & Administrative Sciences, University of Karachi, Karachi, Sindh, Pakistan.

    Corresponding Author: [email protected]

References

Agustí, M. A., Aguilar-Caro, R., Galán, J. L., & Acedo, F. J. (2024). Dynamic resource management and slack resources. Management Decision, 62(13), 223–242. https://doi.org/10.1108/MD-01-2023-0119

Ahmad, M. A., Asaad, M. N., Saad, R., Iteng, R., & Rahim, M. K. I. A. (2016). The mediating effect of sustainable product development on the relationship between quality management practices and organizational performance: Empirical study of Malaysian automotive industry. 020010. https://doi.org/10.1063/1.4960850

Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., & Childe, S. J. (2016a). How can firms improve performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182, 113–131. https://doi.org/10.1016/j.ijpe.2016.08.018

Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., & Childe, S. J. (2016b). How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182, 113–131. https://doi.org/10.1016/j.ijpe.2016.08.018

Al-Ansaari, Y., Bederr, H., & Chen, C. (2015). Strategic orientation and business performance: An empirical study in the UAE context. Management Decision, 53(10), 2287–2302. https://doi.org/10.1108/MD-01-2015-0034

Ali, S., Poulova, P., Yasmin, F., Danish, M., Akhtar, W., & Usama Javed, H. M. (2020). How Big Data Analytics Boosts Organizational Performance: The Mediating Role of the Sustainable Product Development. Journal of Open Innovation: Technology, Market, and Complexity, 6(4), 190. https://doi.org/10.3390/joitmc6040190

Aydiner, A. S., Tatoglu, E., Bayraktar, E., & Zaim, S. (2019). Information system capabilities and firm performance: Opening the black box through decision-making performance and business-process performance. International Journal of Information Management, 47, 168–182. https://doi.org/10.1016/j.ijinfomgt.2018.12.015

Barney, J. (1991). Resources, firm resources, and sustained competitive advantage. Journal of Management, 17(1), 99–120. https://doi.org/10.1177/014920639101700108

Bayrak, T. (2015). A Review of Business Analytics: A Business Enabler or Another Passing Fad. Procedia - Social and Behavioral Sciences, 195, 230–239. https://doi.org/10.1016/j.sbspro.2015.06.354

Bharadwaj, Anandhi, Bharadwaj, A., El Sawy, O. A., University of Southern California, Pavlou, P. A., Temple University, Venkatraman, N., & Boston University. (2013). Digital Business Strategy: Toward a Next Generation of Insights. MIS Quarterly, 37(2), 471–482. https://doi.org/10.25300/MISQ/2013/37:2.3

Bitmiş, M. G., & Ergeneli, A. (2015). How Psychological Capital Influences Burnout: The Mediating Role of Job Insecurity. Procedia - Social and Behavioral Sciences, 207, 363–368. https://doi.org/10.1016/j.sbspro.2015.10.106

Chatterjee, S., Rana, N. P., & Dwivedi, Y. K. (2024). How does business analytics contribute to organisational performance and business value? A resource-based view. Information Technology & People, 37(2), 874–894. https://doi.org/10.1108/ITP-08-2020-0603

Chen, Y., Jin, Q., Fang, H., Lei, H., Hu, J., Wu, Y., Chen, J., Wang, C., & Wan, Y. (2019). Analytic network process: Academic insights and perspectives analysis. Journal of Cleaner Production, 235, 1276–1294. https://doi.org/10.1016/j.jclepro.2019.07.016

Curry, E., Auer, S., Berre, A. J., Metzger, A., Perez, M. S., & Zillner, S. (Eds.). (2022). Technologies and Applications for Big Data Value. Springer International Publishing. https://doi.org/10.1007/978-3-030-78307-5

Davenport, T. H. (2018). From analytics to artificial intelligence. Journal of Business Analytics, 1(2), 73–80. https://doi.org/10.1080/2573234X.2018.1543535

Davenport, T. H. & Harris, J. G. (2007). Competing on analytics: The new science of winning. Harvard Business Press.

Dwivedi, R., Nerur, S., & Balijepally, V. (2023). Exploring artificial intelligence and big data scholarship in information systems: A citation, bibliographic coupling, and co-word analysis. International Journal of Information Management Data Insights, 3(2), 100185. https://doi.org/10.1016/j.jjimei.2023.100185

Erevelles, S., Fukawa, N., & Swayne, L. (2016). Big Data consumer analytics and the transformation of marketing. Journal of Business Research, 69(2), 897–904. https://doi.org/10.1016/j.jbusres.2015.07.001

Hair Jr, J., Sarstedt, M., Hopkins, L., & G. Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106–121. https://doi.org/10.1108/EBR-10-2013-0128

Ferraris, A., Mazzoleni, A., Devalle, A., & Couturier, J. (2019). Big data analytics capabilities and knowledge management: Impact on firm performance. Management Decision, 57(8), 1923–1936. https://doi.org/10.1108/MD-07-2018-0825

Fosso, W. S., Akter, S., Edwards, A., Chopin, G., & Gnanzou D. (2015). How ‘big data’ can have big impact. Journal of Business Research, 70, 356–365.

Fosso Wamba, S., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234–246. https://doi.org/10.1016/j.ijpe.2014.12.031

Frederiksen, A. (2009). Competing on analytics: The new science of winning. Total Quality Management & Business Excellence, 20(5), 583–583. https://doi.org/10.1080/14783360902925454

Ghasemaghaei, M., Hassanein, K., & Turel, O. (2017). Increasing firm agility through the use of data analytics: The role of fit. Decision Support Systems, 101, 95–105. https://doi.org/10.1016/j.dss.2017.06.004

Giovanis, A., & Athanasopoulou, P. (2018). Understanding lovemark brands: Dimensions and effect on Brand loyalty in high-technology products. Spanish Journal of Marketing - ESIC, 22(3), 272–294. https://doi.org/10.1108/SJME-07-2018-0035

Grossman, R. L., & Siegel, K. P. (2014). Organizational Models for Big Data and Analytics. Journal of Organization Design, 3(1), 20. https://doi.org/10.7146/jod.9799

Gunasekaran, A., & Spalanzani, A. (2012). Sustainability of manufacturing and services: Investigations for research and applications. International Journal of Production Economics, 140(1), 35–47. https://doi.org/10.1016/j.ijpe.2011.05.011

Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308-317. https://doi.org/10.1016/j.jbusres.2016.08.004

Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049–1064. https://doi.org/10.1016/j.im.2016.07.004

Helfat, C. E., & Raubitschek, R. S. (2018). Dynamic and integrative capabilities for profiting from innovation in digital platform-based ecosystems. Research Policy, 47(8), 1391–1399. https://doi.org/10.1016/j.respol.2018.01.019

Helfat, C. E., & Winter, S. G. (2011). Untangling Dynamic and Operational Capabilities: Strategy for the (N)ever‐Changing World. Strategic Management Journal, 32(11), 1243–1250. https://doi.org/10.1002/smj.955

Howard, M. C., & Rose, J. C. (2019). Refining and extending task–technology fit theory: Creation of two task–technology fit scales and empirical clarification of the construct. Information & Management, 56(6), 103134. https://doi.org/10.1016/j.im.2018.12.002

Jantunen, A., Tarkiainen, A., Chari, S., & Oghazi, P. (2018). Dynamic capabilities, operational changes, and performance outcomes in the media industry. Journal of Business Research, 89, 251–257. https://doi.org/10.1016/j.jbusres.2018.01.037

Kanwal, S., Al Mamun, A., Wu, M., Bhatti, S. M., & Ali, M. H. (2024). Corporate social responsibility: A Driver for green organizational climate and workplace pro-environmental behavior. Heliyon, 10(19), e38987. https://doi.org/10.1016/j.heliyon.2024.e38987

Ke, M., & Shi, Y. (2014). Big Data, Big Change: In the Financial Management. Open Journal of Accounting, 03(04), 77–82. https://doi.org/10.4236/ojacct.2014.34009

Kesavan, S., & Kushwaha, T. (2020). Field Experiment on the Profit Implications of Merchants’ Discretionary Power to Override Data-Driven Decision-Making Tools. Management Science, 66(11), 5182–5190. https://doi.org/10.1287/mnsc.2020.3743

Kim, G., Shin, B., & Kwon, O. (2012). Investigating the Value of Sociomaterialism in Conceptualizing IT Capability of a Firm. Journal of Management Information Systems, 29(3), 327–362. https://doi.org/10.2753/MIS0742-1222290310

Kwon, O., Lee, N., & Shin, B. (2014). Data quality management, data usage experience and acquisition intention of big data analytics. International Journal of Information Management, 34(3), 387–394. https://doi.org/10.1016/j.ijinfomgt.2014.02.002

LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big data, analytics && the journey from insights to value. MIT Sloan Management Review, 52 (2), 21-32. https://sloanreview.mit.edu/article/big-data-analytics-and-the-path-from-insights-to-value/

Lepenioti, K., Bousdekis, A., Apostolou, D., & Mentzas, G. (2020a). Prescriptive analytics: Literature review and research challenges. International Journal of Information Management, 50, 57–70. https://doi.org/10.1016/j.ijinfomgt.2019.04.003

Lepenioti, K., Bousdekis, A., Apostolou, D., & Mentzas, G. (2020b). Prescriptive analytics: Literature review and research challenges. International Journal of Information Management, 50, 57–70. https://doi.org/10.1016/j.ijinfomgt.2019.04.003

Li, T. (Carol), & Chan, Y. E. (2019). Dynamic information technology capability: Concept definition and framework development. The Journal of Strategic Information Systems, 28(4), 101575. https://doi.org/10.1016/j.jsis.2019.101575

López-Muñoz, J. F., & Escribá-Esteve, A. (2017). An upper echelons perspective on information technology business value. European Research on Management and Business Economics, 23(3), 173–181. https://doi.org/10.1016/j.iedeen.2017.02.003

Luftman, J., Derksen, B., Dwivedi, R., Santana, M., Zadeh, H. S., & Rigoni, E. (2015). Influential it Management Trends: An International Study. Journal of Information Technology, 30(3), 293–305. https://doi.org/10.1057/jit.2015.18

Luoma, J. (2016). Model-based organizational decision making: A behavioral lens. European Journal of Operational Research, 249(3), 816–826. https://doi.org/10.1016/j.ejor.2015.08.039

Maliha, R. (2023). The big data analytical capability and firm performance: Mediating role of supply chain performance. The Asian Bulletin of Big Data Management, 2(1), 36–48. https://doi.org/10.62019/abbdm.v2i1.23

Masa’deh, R., Obeidat, B. Y., & Tarhini, A. (2016). A Jordanian empirical study of the associations among transformational leadership, transactional leadership, knowledge sharing, job performance, and firm performance: A structural equation modelling approach. Journal of Management Development, 35(5), 681–705. https://doi.org/10.1108/JMD-09-2015-0134

Mikalef, P., & Krogstie, J. (2020). Examining the interplay between big data analytics and contextual factors in driving process innovation capabilities. European Journal of Information Systems, 29(3), 260–287. https://doi.org/10.1080/0960085X.2020.1740618

Mikalef, P., & Pateli, A. (2017). Information technology-enabled dynamic capabilities and their indirect effect on competitive performance: Findings from PLS-SEM and fsQCA. Journal of Business Research, 70, 1–16. https://doi.org/10.1016/j.jbusres.2016.09.004

Mikalef, P., Pappas, I. O., Krogstie, J., & Giannakos, M. (2018). Big data analytics capabilities: A systematic literature review and research agenda. Information Systems and E-Business Management, 16(3), 547–578. https://doi.org/10.1007/s10257-017-0362-y

Mikalef, P., Pappas, I. O., Krogstie, J., & Pavlou, P. A. (2020a). Big data and business analytics: A research agenda for realizing business value. Information & Management, 57(1), 103237. https://doi.org/10.1016/j.im.2019.103237

Mikalef, P., Pappas, I. O., Krogstie, J., & Pavlou, P. A. (2020b). Big data and business analytics: A research agenda for realizing business value. Information & Management, 57(1), 103237. https://doi.org/10.1016/j.im.2019.103237

Modgil, S., Gupta, S., Sivarajah, U., & Bhushan, B. (2021). Big data-enabled large-scale group decision making for circular economy: An emerging market context. Technological Forecasting and Social Change, 166, 120607. https://doi.org/10.1016/j.techfore.2021.120607

Oliveira, R. D., Leitão, J., & Alves, H. (2020). Corporate Governance and Sustainability in HEIs. In E. Sengupta, P. Blessinger, & T. S. Yamin (Eds.), Innovations in Higher Education Teaching and Learning (pp. 177–191). Emerald Publishing Limited. https://doi.org/10.1108/S2055-364120200000022016

Phillips-Wren, G., & Hoskisson, A. (2015). An analytical journey towards big data. Journal of Decision Systems, 24(1), 87–102. https://doi.org/10.1080/12460125.2015.994333

Rahman, I. A., Memon, A. H., & Karim, A. T. A. (2013). Examining Factors Affecting Budget Overrun of Construction Projects Undertaken through Management Procurement Method Using PLS-sem Approach. Procedia - Social and Behavioral Sciences, 107, 120–128. https://doi.org/10.1016/j.sbspro.2013.12.407

Salehan, M., & Kim, D. J. (2016). Predicting the performance of online consumer reviews: A sentiment mining approach to big data analytics. Decision Support Systems, 81, 30–40. https://doi.org/10.1016/j.dss.2015.10.006

Schuberth, F., Hubona, G., Roemer, E., Zaza, S., Schamberger, T., Chuah, F., Cepeda-Carrión, G., & Henseler, J. (2023). The choice of structural equation modeling technique matters: A commentary on Dash and Paul (2021). Technological Forecasting and Social Change, 194, 122665. https://doi.org/10.1016/j.techfore.2023.122665

Sena, V., Bhaumik, S., Sengupta, A., & Demirbag, M. (2019). Big Data and Performance: What Can Management Research Tell us? British Journal of Management, 30(2), 219–228. https://doi.org/10.1111/1467-8551.12362

Themistocleous, M., & Papadaki, M. (Eds.). (2020). Information Systems: 16th European, Mediterranean, and Middle Eastern Conference, EMCIS 2019, Dubai, United Arab Emirates, December 9–10, 2019, Proceedings (Vol. 381). Springer International Publishing. https://doi.org/10.1007/978-3-030-44322-1

Van Kollenburg, G. H., Van Es, J., Gerretzen, J., Lanters, H., Bouman, R., Koelewijn, W., Davies, A. N., Buydens, L. M. C., Van Manen, H.-J., & Jansen, J. J. (2020). Understanding chemical production processes by using PLS path model parameters as soft sensors. Computers & Chemical Engineering, 139, 106841. https://doi.org/10.1016/j.compchemeng.2020.106841

Viaene, S. (2013). Data Scientists Aren’t Domain Experts. IT Professional, 15(6), 12–17. https://doi.org/10.1109/MITP.2013.93

Vidgen, R., Shaw, S., & Grant, D. B. (2017). Management challenges in creating value from business analytics. European Journal of Operational Research, 261(2), 626–639. https://doi.org/10.1016/j.ejor.2017.02.023

Volberda, H. W., Khanagha, S., Baden-Fuller, C., Mihalache, O. R., & Birkinshaw, J. (2021). Strategizing in a digital world: Overcoming cognitive barriers, reconfiguring routines and introducing new organizational forms. Long Range Planning, 54(5), 102110. https://doi.org/10.1016/j.lrp.2021.102110

Zhan, Y., & Tan, K. H. (2020). An analytic infrastructure for harvesting big data to enhance supply chain performance. European Journal of Operational Research, 281(3), 559–574. https://doi.org/10.1016/j.ejor.2018.09.018

Zhang, S., O’Connor, P., & Gardiner, E. (2023). Some rules should be broken: Developing a measure of constructive rule beliefs. Personality and Individual Differences, 207, 112145. https://doi.org/10.1016/j.paid.2023.112145

Downloads

Published

2024-12-30

Issue

Section

Articles

How to Cite

Khan, A. K., Zaman, S. U., & Alam, S. H. (2024). Impact of Big Data Analytics on Organizational Performance: The Role of Business Analytics, Decision-Making Quality and Sustainability. The Regional Tribune, 3(1), 389-406. https://doi.org/10.63062/trt/V24.069